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The effect of steady perturbations of a stepped load moving on the plane surface 

of a perfect medium on the hydrodynamic parameters behind an oblique shock 

wave front is considered. Only the case in which the system of differential 
equations for the perturbations is of the elliptic type is investigated on the as- 

sumption that the conditions of stability [1] of a plane stationary shock wave 
are satisfied. Conditions under which the solution has a logarithmic or power 
singularity in derivatives are discussed. The results may prove useful as a 
guide in numerical computations. 

1. Let us consider the stable motion of a perfect 
medium which fills a half-space and is subjected to 
a load whose profile is close to a “step” form unchang- 
ing in time. The load moves on the medium surface 
at constant supersonic velocity D . In the system of 
coordinates x = (5, y) attached to the load front 
(Fig. 1) the pressure at the boundary can be represent- 
ed in the form 

P = P, [I + Eq (x)], z > 0, P = 0, 5 < 0 

It is assumed that a solution with an oblique shock wave with constant parameters 

behind it obtains when E = 0 , and that ahead of the single solution discontinuity 

front the medium is unperturbed. When s < i we take into account in the linear 
formulation the effect of perturbations by representing the unknown functions P (x) 
and U (x) = (U, w) which is the velocity vector of a point of the medium determin- 

ed in laboratory coordinate system, I’ (x) is the specific volume, and x = F (y) is 

the equation of the front line of the form 

P =: p1 (1 + Ed), u z ~1 (1 + EU), W = U, (- b 4 84 

v z v. (v, / v. + ev), z = F (Y) = b [Y + ef (Y)] 

where the subscripts zero and unity denote quantities ahead and behind the front, reap- 

ectively. 
Conditions at the unperturbed front imply that 

U, = Y,P, / D, b’ = &,Dz / (V,p,) - 1 (0, = 1 - v, / v,) 

We define the stable motion of perturbations within the angle a (Fig. 1) by the 

equations 
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@V) u = vp, vu = (1 - k2) gvp 

u = (4 4, g = (1 - el, be,) v. I vl 

el = e. / (f + by, k* = 1 - [v# f (voC)] a 
where c is the speed of sound behind the front. When be,, < 1 and V. / vi __I 1, 
these equations are considerably simpler. We have 

au/L’x=Vp, dwIdy=-k=%pJax (1.1) 

Using the laws of conservation at the discontinuity for .Z = by we obtain the 
boundary conditions 

u = P = cf’, u, = - 6 (1 + C) f’, p = - jv (1.2) 
26% 

’ = (i --1) (1 -j- ba) ’ 

where the prime and subscript H denote differentiation with respect to u and along 
the Hugoniot ourve, respectively. 

when be0 4 1 the condition at the medium surface is brought to the plane Y = 0 

P = P 1x), x > 0 (4 (x) -) 0, x - 00) (1.3) 

and when x - DO and Y > 0 the conditions become null. 
We solve problem (1. l)-( 1.3) on the assumption that ka > 0, i. e. 

D, CD < 4 I 15, fl, = (pi15 I e,)l’* 

where D, is the shock wave velocity at point 0. The system of Eqs. (1.1) is then 
of the elliptic kind and the problem analogous to that in [2~. 

2. From the first two of Eqs. (1.1) and the first of conditions (1.2) follows that 

l.4 (4 = p (H). The remaining equations (1.1) are satisfied if Q (z) = p + IW / k 

(z = I + fkp) is an analytic function of I regular inside the angle 0 < arg z < op 

(tg a0 = k tg rs = k f b). 

The real part of Q (4 is specified on the half-line arg t = 0, and on the half- 
line arg 2 = a0 we have the relation between the real and imaginary parts, which in 
accordance with (1.2) is of the form 

Re Q = @BImQ, B=Bo+ mn 
(2.1) 

PO = arctg (kd / b), A = C f (1 f C), m = 0, +1, $-2, . . . 

where unlike in [2] PO f a,. 
Function Q (z) must vanish at infinity. 
We represent the interior of angle a, in the upper half-plane using the conform- 

al mapping 
5 = z” (v=n/a0, t=5+Iq) 

If n = 0, f < 0 the condition 

ImiG+Q(<)=O 

which follows from (2.1) makes possible the analytic continuation into the lower half- 
plane through the boundary l E < 0, n = 0. For the limit values of Q (5) above and 
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below the axis E > 0 this condition assumes the form 

Q+ (U = e2iB Q- (8 + 2q (C?‘) 

The unique solution of this problem, which is zero at infinity and bounded at the 
coordinate origin, is of the form 

m 

Q i4 =--& 1 4 (4 dx ~o--Y)=Bo/%t PO>0 

I, 

$W (1 - xv, Iy ’ ’ = { (F + 60) /a,, 80 < 0 

3. It can be shown that 

The behavior of Q’ (z) when 1 z 1 - 0 depends on the sign of v - u _ i I_ 
Y(Y---1/Y). When y>iIv, then 0’ (z) is continuous at zero. When y = 

i/v and y<tIv. function Q’ (z) has a logarithmic or power singularity, respect- 
ively, and the front curvature becomes infinite at point 0, which indicates in- 
stability of solution in the metric CC*). 

It can be shown that the inequality y Q 1 / v is equivalent to the system of in- 

equalities - 1 Q A < 0. We shall solve that system for b2 taking into account the 

conditions of stability of a plane steady shock wave [l] which can be rewritten in the 
form 

- (1 + B) < j < 1 (B = 2 I(1 - .P) I (1 + 631“” < 2) (3.1) 

We obtain 

ba < (1 - i) / (3 + i) (3.2) 

If condition (3.1) is satisfied, the quantity in the right-hand side of (3.2) is non- 
negative, hence there always exists an a, = arcctg [(I - j) / (3 + 111”’ such that 

O<a,<nlZ, and when a* < a < n f 2 , Q’ (z) has a singularity. The range 

of such values of a widens from j = 1 (a, = 3 / 2); the slope of the Hugoniot curve 
at point v = v, coincides with the slope to i = 0 (a* = Ed I3) that determines vel- 

ocityDothe ~ug~ot curve becomes vertical, and then, for negative values of i the 

IIugoniot curve has an anomalous run. 

4. Instead of the problem of Q (z) we could consider the problem of Q’ (z) = 

3p / 6’s - ik-lap / 3~. The condition for Q’ (z) at the front is obtained by differen- 

tiating conditions (1.2) along the front and eliminating superfluous derivatives using 
(I.. 1). It is of the form 

aVp = 0, a = (b2 - PA, b (A + 1)) = (ul, a*! 

Vector a points out the direction of isobars emanating from the front. The con- 

dition of passing to a solution with a s~gu~~ty coincides with the condition that 
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a, = 0. We denote the angle between vector a and the [positive] direction of the 
x-axis by cp. We have the following possible cases of the isobars (Fig. 1): 

1)-n/2<<<< for’--<A<--- and ba/k=<A<m 
2) cp = -n / 2 for A = ba / k2 (al = 0) 
3) --n/2-a<<<--_I2 for O<A<bPlka 
4) cp=O for A=--1 (al=O) 

5) O<cp<a for --1<A<O 

This shows that Q’ (z) has a singularity when the isobar run is anomalous (i. e. 
in the cases 4) and 5)). 

Note that the disclosed singularities of solution are not a consequence of lineariza- 
tion. It can be shown that the front curvature becomes infinite at point 0 within 
some range of external parameters, with the physical and geometrical nonlinearity 

taken fully into account. 
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